
1

Developing an Autonomy Infusion Infrastructure for
Robotic Exploration1,2

Maria G. Bualat, Clayton G. Kunz3, Anne R. Wright3 Issa A.D. Nesnas
NASA Ames Research Center Jet Propulsion Laboratory

MS269-3 California Institute of Technology
Moffett Field, CA 94035-1000 Pasadena, CA 91109

650-604-4250 818-354-9709
Maria.G.Bualat@nasa.gov, [ckunz | awright]@arc.nasa.gov Issa.Nesnas@jpl.nasa.gov

1 0-7803-8155-6/04/$17.00 © 2004 IEEE
2 IEEEAC paper #1327, Version 4, Updated February 3, 2004
3
 Contractor with QSS Group, Inc.

Abstract—Future robotic exploration missions will require
autonomy in order to accomplish mission goals for
operational efficiency and science return. For example, it
will require three communication cycles for the Mars
Exploration Rovers, Spirit and Opportunity, to place an
instrument on a science target. Reducing this time
necessitates highly accurate navigation, obstacle avoidance,
target tracking, target analysis, manipulation, and fault
diagnosis. Technologies to address these and other
operational elements are currently being developed at NASA
and within academia. However, infusion into missions has
always been a difficult task for researchers. In order to
minimize risk, mission managers are reluctant to include
new technologies unless they have undergone extensive
testing and verification under flight-realistic conditions.
Furthermore, infusion of new technologies into missions is
made more difficult by the variety of software frameworks
under which these technologies are developed. Mission
managers would like to see competing solutions
demonstrated on a common platform so that they can
compare performance and choose the solution best suited to
their application.

To address these issues of autonomy infusion, NASA’s
Mars Technology Program has established an infrastructure
for developing, demonstrating and verifying autonomy
subsystems to be considered by mission managers for
upcoming flights. This infrastructure includes the
CLARAty (Coupled Layer Architecture for Robotic
Autonomy) [5] software architecture and four rover
prototypes: the FIDO, Rocky 7 and Rocky 8 rovers at the
Jet Propulsion Laboratory (JPL) and the K9 rover at NASA
Ames Research Center (ARC). By providing a common
framework for development and mission relevant testbeds
on which to demonstrate, the program hopes to better enable
incorporation of new technologies to make more capable
robotic exploration systems.

A distributed team of engineers and scientists at JPL, ARC,
and several academic institutions are developing the
CLARAty architecture. As in the open source paradigm,

the goal is to have a large enough developer and user base to
foster greater usability. However, having a large,
distributed development team also leads to many
challenges, especially in the context of a government-
sponsored project. In this paper, we will present an
overview of the CLARAty architecture and describe the
growth of capabilities and algorithms now available within
this framework. We will discuss the challenges of
developing a software system with remote institutions and
the lessons learned in our experience developing CLARAty
with ARC, JPL, and Carnegie Mellon University. We will
describe the rover testbeds, in particular the K9 rover, and
the integration and demonstration of new technologies
enabling robust execution, single communication cycle
instrument placement, fault diagnosis, and autonomous
science.

TABLE OF CONTENTS

..
1. INTRODUCTION... 1
2. THE CLARATY ARCHITECTURE.................... 3
3. TESTBEDS – THE K9 ROVER.......................... 4
4. DEVELOPMENT ENVIRONMENT AND TOOLS..... 6
5. CHALLENGES AND LESSONS LEARNED............. 7
6. K9 INTEGRATION...................................... 10
7. SUMMARY ... 10
ACKNOWLEDGEMENTS................................... 11
REFERENCES .. 11
BIOGRAPHIES ... 12

1. INTRODUCTION

NASA’s Space Science Enterprise has developed a roadmap
that provides a scientific framework for robotic solar system
exploration in the next decade. This roadmap includes
ambitious plans to explore the Moon, Mars, and the other
planets with a variety of mission sizes and types including:
 fly-bys, orbiters, stationary landers, rovers, aerial vehicles,
and sample and return. Many missions will perform

2

intensive in situ exploration of planetary bodies and, in
some cases, return samples to Earth for detailed analysis [2].
 As missions become more complex and travel farther from
Earth, science return and mission safety will require
increased autonomy and adaptability through advanced
architectures in spacecraft systems [1].

NASA funds robotics and autonomy research at many
institutions in the government, private, and academic
sectors. Until now, there has been no clear path for these
technologies to make their way into missions. Researchers
at different institutions use a variety of software frameworks
to develop their technologies, making it difficult to compare
competing algorithms. A duplication of effort occurs, as
each researcher must create a robotic infrastructure in which
to develop and test his technology. Additionally, without
validation in previous flight systems or flight-relevant field
deployments, inclusion of new technologies increases
mission risk unacceptably.

In an attempt to address these issues, the Mars Technology
Program (MTP) has established an infrastructure for
developing, demonstrating and verifying autonomy
subsystems for planetary surface robotics. Key elements of
this infrastructure are the CLARAty architecture and the

Mars rover prototypes at Ames and JPL.

An example of technology flow into a mission, the Mars
Science Laboratory (MSL), is depicted in Figure 1. An
MTP led review committee determines which legacy
robotics technologies and new technologies coming out of
other NASA programs should be ported into CLARAty.
The developers of all new technology funded under MTP
must deliver their software to the program already integrated
within the CLARAty system. The MSL project
management reviews the technologies available under
CLARAty and sends those it deems most critical to a series
of Technology Validation tasks. After validation, MSL
project management reviews each technology once more for
integration into MDS, the flight software architecture [7].

The development of the CLARAty architecture is an
ambitious and ongoing project. It involves a large
development team that is spread across the country.
CLARAty is designed to include all aspects of rover
control, from motor control to planning and scheduling, an
extremely large and diverse range of technologies.
CLARAty is still a rather young project, and is still very
much in a fast-growing stage, with the associated aches and
pains that implies.

Figure 1 – Rover Functional Autonomy Technology Flow [7]

3

The K9 rover engineering team at Ames Research Center has
been developing and using CLARAty since 2001. In this
paper, we discuss our experiences with CLARAty and what
we see as the biggest challenges facing the project. In
section 2, we will give a brief overview of the CLARAty
architecture. In section 3, we will describe the K9 rover
testbed and compare it to the other Mars exploration rover
prototypes. We discuss the development environment and
tools in section 4. Section 5 covers some of the challenges
and lessons we’ve learned in our experience with CLARAty,
and in section 6, we give some examples of technology
we’ve integrated and demonstrated onboard the K9 rover,
especially concentrating on the experience of integrating
software into the CLARAty environment and adapting it to
a new platform. Finally, we summarize in section 7.

2. THE CLARATY ARCHITECTURE

CLARAty is a unified and reusable software architecture
that provides robotic functionality and simplifies the
integration of new technologies on robotic platforms. It is a
research tool designed for the development, validation, and
maturation of various research technologies [5].

One of our goals is to provide a design that allows
researchers to use various components spanning domains
outside their immediate expertise. These components should
be flexible and extendible to support various applications.
We need to use well-understood and well-developed
knowledge from the various domains and adapt them as
generalized and reusable components. Just as an operating
system provides a level of abstraction from the
computational hardware, our goal is to provide a level of
abstraction from the robotic hardware implementation that
will allow developers to "integrate once and run anywhere."
Of course, there are physical limitations to this goal that
result from the large variability in rover capabilities.

CLARAty is a domain-specific robotic architecture designed
with four main objectives: (1) to reduce the need to develop
custom robotic infrastructure for every research effort, (2) to
simplify the integration of new technologies onto existing
systems, (3) to tightly couple declarative and procedural-
based algorithms, and (4) to operate a number of
heterogeneous rovers with different physical capabilities and
hardware architectures.

CLARAty is a collaborative effort among many institutions
including the Jet Propulsion Laboratory, Ames Research
Center, Carnegie Mellon University, and the University of
Minnesota. Through NASA’s Mars Technology and
Intelligent Systems programs, these and other universities,
centers, and members of the robotics community are
contributing and integrating algorithms into CLARAty.
CLARAty builds upon decades of robotic experience at the
various robotic centers.

It is our goal to have the resultant architecture and software
algorithms made available to the larger robotics community
through an open source distribution.

Background

Developing intelligent capabilities for robotic systems
requires the integration of various technologies from
different disciplines. Robotic control systems require the
interaction of various software components within a real-
time system, and the management of uncertainties resulting
from the interaction of the robot with its environment.
Environmental uncertainties, the complexities of
software/hardware interactions, and the variability of the
robotic hardware make the task of developing robotic
software complex, hard, and costly. Hence, it has become
increasingly important to leverage robotic developments
across projects and platforms. Because many algorithms
developed for robotic systems can be generalized, it is
possible to use these algorithms on various platforms
irrespective of the details of their implementations.

With the increased interest in developing rovers for future
Mars exploration missions, a significant number of rover
platforms have been designed and built over the past decade.
Several NASA centers and university partners use these
platforms to test their newly developed technologies in
order to improve the autonomous robot capabilities.
Because of isolated software development efforts,
exacerbated by differences in the mechanical and electrical
designs of these vehicles, they have historically shared little
in terms of software infrastructure. As a result, transferring
capabilities from one rover to another has been a major and
costly endeavor. Furthermore, because robotics systems
cover several domain areas, researchers of a single domain
also needed to integrate their newly developed technology
into the complex robotic environment. Proper integration
requires an in-depth understanding and characterization of
the behavior of various components of the system, which
may vary from one platform to another.

Description

The CLARAty architecture has two distinct layers: the
Functional Layer and the Decision Layer (Figure 2). The
Functional Layer uses an object-oriented system
decomposition and employs a number of known design
patterns to achieve reusable and extendible components.
These components define an interface and provide basic
system functionality that can be adapted to a variety of real
or simulated robots. The Functional Layer includes a
number of generic frameworks centered on various robotic-
related disciplines. Packages included in the Functional
Layer are: digital and analog I/O, motion control and
coordination, locomotion, manipulation, vision, navigation,
mapping, terrain evaluation, path planning, science analysis,
state estimation, simulation, and system behavior. The
Functional Layer provides the system's low- and mid-level
autonomy capabilities. Control algorithms such as vision-
based navigation, sensor-based manipulation, and visual
target tracking that use a predefined sequence of operations
are often implemented in the Functional Layer. In some
cases though, it is possible to generate such sequence of
operations by modeling them as activities and having the
Decision Layer schedule instantiations of these activities
based on appropriate mission goals and constraints.

4

The Decision Layer is a global engine that reasons about
system resources and mission constraints. It includes
general planners, executives, schedulers, activity databases,
and rover and planner specific heuristics. The Decision
Layer plans, schedules, and executes activity plans. It also
monitors the execution modifying the sequence of activities
dynamically when necessary. The goal of a generic Decision
Layer is to have a unified representation of activities and
interfaces.

The Decision Layer interacts with the Functional Layer
using a client-server model. The Decision Layer queries the
Functional Layer about availability of system resources in
order to predict the resource usage of a given operation. The
Decision Layer sends commands to the Functional Layer at
various levels of granularity. The Decision Layer can utilize
encapsulated Functional Layer capabilities with relatively
high-level commands, or access lower-level capabilities and
combine them in ways not provided by the Functional
Layer. The former is valuable when planning capabilities are
limited, or when under-constrained system operation is
acceptable. The latter is valuable if detailed, globally
optimized planning is possible, or if resource margins are
small. CLARAty supports both modes of operation. Status
on resources, state conditions, and activity execution are
reported from the Functional Layer to the Decision Layer
asynchronously or synchronously at rates specified by the
Decision Layer.

3. TESTBEDS – THE K9 ROVER

Currently, rovers at three institutions are running under the
CLARAty architecture: K9 at Ames Research Center
(Figure 3), FIDO, Rocky 7, and Rocky 8 at the Jet
Propulsion Laboratory, and Bullwinkle, a commercially-
available ATRV robot [12], at Carnegie Mellon University.
 JPL also has several benchtop testbeds that simulate the
computational and some motor subsystems of the various
rovers. Operating systems actively supported under
CLARAty include: VxWorks, Sun Solaris, and RedHat
Linux. Parts of CLARAty have also been built under Mac
OS X, Windows NT/2000, and IRIX.

K9, FIDO and Rocky 8 are currently the highest fidelity
Mars rover prototypes for upcoming NASA missions
available, and are based on the same 6-wheel steer, 6-wheel
drive rocker-bogey chassis designed by JPL. They are all
outfitted with electronics and instruments appropriate for
supporting research relevant to remote science exploration.
Each rover has different avionics and instrumentation, with
some overlaps between the rovers (for instance, K9 and
Rocky 8 use the same IEEE 1394 cameras for navigation
and obstacle avoidance).

The computing onboard K9 is performed by a 1.4 GHz
Pentium-M laptop running the Linux operating system.
The avionics of the K9 rover have been specifically designed
to enable simulation of realistic mission power constraints
and science operations. Low power subsystems that can be
commanded on and off and Li-ion batteries with state of

Figure 2 – The CLARAty architecture with top Decision Layer and bottom Functional Layer.

5

charge monitors allow planning and execution systems on-
board to reason and act on resource availability. An
auxiliary microprocessor communicates with the main
computer over a serial port and controls power switching
and other I/O processing. The rover has a 5 degree-of-
freedom arm with a reach of 70 cm that is based on the
FIDO rover arm design.

Figure 3 – The K9 rover places an instrument against a rock
in the NASA Ames Marscape.

Instruments on-board K9 include a compass, an inertial
measurement unit, and 3 pairs of monochromatic cameras
used for navigation and instrument placement. A
differential GPS unit provides ground truth for navigation
systems. A scanning laser rangefinder with coverage of the
arm workspace is also available to provide extremely high-
resolution 3D models for instrument placement. Current
science instruments include a pair of high-resolution color
cameras mounted on a pan/tilt unit atop a fixed mast
approximately 1.5 meters above the ground, and the
CHAMP, an arm-mounted focusable microscopic camera
developed by the University of Colorado, Boulder [4].

One of the main challenges in developing generic
components and adapting them to different robots stems
from the variability of the platforms and their capabilities.
We will use the example of wheeled locomotion to illustrate
how to use domain knowledge to classify vehicles to enable
the development of generic and reusable classes. We will
also discuss the challenges that arise from adapting the
generic algorithms to a number of rover platforms with
different hardware architectures.

Wheeled locomotors have different capabilities depending
on their mechanical configuration. Consider the locomotion
capabilities of a number of mobile platforms, the ATRV,
Rocky 7, Rocky 8, FIDO, K9, and Sojourner rovers (Figure
4). These wheeled vehicles have different maneuvering
capabilities. The proper classification of these vehicles is
based on the domain knowledge of the kinematics and
dynamics for controlling these vehicles. One can classify
these as non-steerable (or skid steerable) such as the
ATRVs, partially steerable such as the Rocky 7 and
Sojourner rovers, and fully steerable such as the Rocky 8,

FIDO, and K9 rovers. Partially steerable vehicles can have
different configurations. For example the Sojourner rover
has six drive wheels and two non-steerable center wheels.
On the other hand, Rocky 7 has only two steerable front
wheels. As such, partially steerable, wheeled locomotors are
constrained to instantaneously move about a rotation center
that lies along the non-steerable wheel axle (or a virtual axle
that averages all non-steerable axles in order to minimize
slip). Fully steerable vehicles can perform crab maneuvers,
controlling trajectory and vehicle orientation independently.
Partially steerable vehicles have more constraints and cannot
independently control path and heading, but can use a
“parallel parking” maneuver to achieve a crab equivalent
[10].

A second challenge that arises in addressing these classes of
vehicles comes from the accessibility to the system’s
control parameters. For example, the ATRV provides
independent control for each side of the vehicle only but not
for each individual wheel. The control model for this
vehicle is different from those vehicles where each wheel can
be controlled individually.

A third challenge stems from the different motion control
architectures. Consider the motion control architecture of
Rocky 7, Rocky 8, K9 and FIDO (all have six wheels and
almost all have full steering capabilities). While closer in
resemblance to each other than to the ATRVs, for instance,
the control architecture for each vehicle is still unique. Both
the Rocky 8 and K9 rovers (Figure 5) use a distributed
motion control architecture where each motor interfaces to a
single-axis microprocessor controlling the motor servo loop
and, in some cases, profiling a trajectory. Distributed
microcontrollers can, as in the case of Rocky 8, also
perform analog and digital I/O operations. They also
possess some additional programmable processing
capabilities. In a distributed system, microcontrollers are
connected to the main processor via some type of a serial
bus. The K9 rover uses a multi-drop RS-422 serial link for
the control of its mobility motors. Rocky 8 uses a single
I2C bus for its locomotor, arm, and mast subsystems. There

Front

x

y zC

Partially Steerable
(e.g. Rocky 7)

Front

y z
C

All wheel steering
(e.g. Rocky8, Fido, K9)

Front

x
y

z
C

Skid Steering
(e.g. ATRV)

Front
x

y zC

Partially Steerable
(e.g. Sojourner)

Figure 4 – Rover Locomotion Types

6

is an important coupling between the arm/mast and the
locomotor as a result of the shared bus. The software
architecture has to enable the simultaneous operation of the
manipulator and locomotor subsystems by managing the
shared resource. While in an abstract sense the two
subsystems are independent, the implementation is not.

Compact PCI
- x86 Arch
- Wireless E/net
- 1394 FireWire
- I2C Bus

Rocky 8

Actuator/Encoders

Potentio-
meters

I2C

1394 Bus

IMU

RS232

Sun Sensor

K9

PC104+
- x86 Arch
- Wireless E/net
-1394 FireWire
-RS422 serial Bus

Rocky Widgets
Single-axis controllers
Current sensing
Digital I/O
Analog I/O

PIC-SERVOs
Single-axis controllers

Current sensing

IMU

RS232

Compact PCI
- x86 Arch
- Wireless E/net
- 1394 FireWire
- I2C Bus

Rocky 8

Actuator/Encoders

Potentio-
meters

I2C

1394 Bus

IMU

RS232

Sun Sensor

K9

PC104+
- x86 Arch
- Wireless E/net
-1394 FireWire
-RS422 serial Bus

Rocky Widgets
Single-axis controllers
Current sensing
Digital I/O
Analog I/O

PIC-SERVOs
Single-axis controllers

Current sensing

IMU

RS232

Figure 5 – Distributed motion control architecture for
Rocky 8 and K9.

Another aspect of hardware architecture is hardware
synchronization. The K9 system supports hardware
synchronization of motors via broadcasting serial commands
that tell all axes to synchronously execute their loaded
trajectory, or synchronously stop. The Rocky 8 rover
implements synchronization in software by loading all
motor trajectories first and then issuing start commands to
all motors sequentially to minimize latency between the
first and last motor. Once again the software architecture
should support these two different modes of
synchronization. As such, support for device groups is an
essential part of the CLARAty architecture. The flexibility
in the implementation of group commands is also important
since hardware implementations can vary dramatically.

Compact PCI
PPC 750 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless EthernetRocky 7

Actuator/Encoders

Potentiometers

Parallel Custom Interface
MUX/Handshaking

Video Switcher

GyrosAccels

AIO

PID Controllers

Compact PCI
PPC 750 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless EthernetRocky 7

Actuator/Encoders

Potentiometers

Parallel Custom Interface
MUX/Handshaking

Video Switcher

GyrosAccels

AIO

PID Controllers

Figure 4: Custom parallel bus for the multiplexed
motion controllers on Rocky 7

Figure 6 – Custom parallel bus for the multiplexed motion
controllers on Rocky 7.

The Rocky 7 system uses commercial-of-the-shelf (COTS)
microcontroller chips (LM629) for the motor control (Figure
6). These controllers are laid out on a central motion control
board and are connected to the host processor via a custom
parallel port connection with chip multiplexing. All

actuators in the system share the same bus, but the
communication bandwidth is higher than the serial links for
both Rocky 8 and K9. Similar to Rocky 8, this motion
control board supports the locomotion and manipulation
subsystems. As in the case of Rocky 8 and K9, the closed
loop servo control is done on the microcontrollers that have
fixed control law with programmable parameters and modes.

Fido

Actuator/Encoders

Potentiometers

PID Control in
Software

Video Switcher

IMU

RS232
Serial

PC104+
x86 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless EthernetFido

Actuator/Encoders

Potentiometers

PID Control in
Software

Video Switcher

IMU

RS232
Serial

PC104+
x86 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless Ethernet

Figure 5: Centralized memory-mapped motion
control architecture for FIDO Figure 7 – Centralized memory-mapped motion control

architecture for FIDO.

Figure 7 shows a third implementation of a motion control
architecture. The FIDO rover [11] uses a centralized
hardware-mapped control architecture. The motors are
directly connected to an analog output board and the
encoders are directly connected to a quadrature encoder
board. All hardware states and registers from the PC104+
boards are mapped via the PCI backplane to the host
processor’s memory making them readily accessible to the
software. There is virtually zero cost from a software
architecture standpoint to retrieve the value of any register as
compared to the other systems. Hence the coupling among
the various motor/encoder states is abstracted by the
hardware. However, since there is only one processor (host)
in the system, the servo loops for all actuators have to be
done on the main processor. This introduces a coupling
between the servo control of the motors and the application
algorithms that will be competing for the same
computational resources. It also places a requirement on the
operating system and the software architecture to meet hard
real-time scheduling guarantees. So while the K9 and Rocky
8 rovers can operate in a soft real-time environment such as
Linux, the FIDO rover requires the operating system and
supporting architecture to run in hard real-time. On the other
hand, the FIDO architecture has the advantage of allowing
the software to easily modify the control law and insert
validation checks in case a motor or encoder failure occurs.

4. DEVELOPMENT ENVIRONMENT AND TOOLS

The CLARAty software development process is distributed
among three primary institutions: Jet Propulsion
Laboratory, NASA Ames Research Center, and Carnegie
Mellon with active participation of various universities
including University of Minnesota, University of
Washington, MIT, and University of Michigan. To support
the various institutions and teams, CLARAty supports a
variety of host and target platforms. The host platform is
the type of computer that the user runs the tools on to

7

create, modify, and build software. CLARAty works on a
variety of Unix host platforms, the most common being
Linux and Solaris. The target platform controls the robot or
simulation, and is most commonly Linux or VxWorks.

To support building for multiple targets, platforms are
named by the processor type, OS type and version, and
compiler type and version, such as sparc-solaris2.7-gcc3.2
or ix86-vx5.5-gcc2.95. In the case of Linux, a slightly
modified algorithm is used since there is not a clear
‘version’ of Linux as there is with Solaris or VxWorks, and
the determinant of binary compatibility depends on the
versions of gcc and glibc, not the version of the kernel. For
example, a stock RedHat 7.3 installation would be ix86-
linux-gcc2.96-glibc2.2, and a stock RedHat 9 installation
would be ix86-linux-gcc3.2-glibc2.3.

The development environment and tools break down into
two types: host tools, and target packages. Host tools used
by CLARAty include:

• YaM (Yet another Make), a module/version/build
management tool developed at JPL

• perl [13], required by YaM and used in the build
• CVS (Concurrent Versions System) [14], a version

control system used explicitly in modules,
implicitly by YaM

• make [15], controls the build in modules and at the
top level

• doxygen [16], creates HTML documentation from
sources

 Target packages used by CLARAty include:

• ACE (Adaptive Communication Environment)
[17], an operating system adaptation layer

• cppunit [18], a testing support infrastructure
• Qt [19], a user interface toolkit used only on non-

VxWorks targets

The CVS and make tools are universal and stable enough
that they can safely be assumed to already be present on the
host computer and in the user’s path. The other tools and
packages for supported hosts and targets are available in a
central location in the CLARAty AFS (Andrew File
System) [20] space at JPL. Placing these files in AFS
allows any computer equipped with an AFS client to access
them at a canonical location:
/afs/jpl.nasa.gov/group/claraty/pkgs.

For each site where CLARAty is used, there is a
SOURCEME file that users must source in their shell in
order to set up the needed environment variables. This
SOURCEME file detects the host platform type, and uses
that to set up appropriate executable, shared library, and perl
module paths to allow the host tools to be used, as well as
base paths to the target packages and various configuration
files. Having the tools and packages available in a central
location with a uniform path from anywhere is a very good
thing in that it means that CLARAty development is not
tied to just particular computers, or a particular subnet; it

works from anywhere. However, using the tools and
packages from JPL’s AFS server from remote locations is
slow. For occasional use, this is not a serious problem.
However, if there are multiple heavy users, as is the case at
Ames, this can become a significant limitation. It is
therefore advantageous to mirror the tools and packages
locally and setup the site-specific SOURCEME file with local
overrides for the base paths for the tools and packages. This
significantly increases performance. However, the CVS
repository is also located in JPL AFS space, and cannot be
mirrored.

Once a user has setup his environment, he can use YaM,
CVS, and make to create, maintain, or build a “sandbox”
containing a set of CLARAty modules. A sandbox
contains a local copy of work modules that a user may
modify, and symbolic links to pre-built link modules. The
CLARAty makefiles (files that control the actions of make)
use the environment variables setup in the SOURCEME file
and any additional environment variables set up by the user
to determine the target platform, and find the header files
and libraries in the target packages to use as part of the
build. Different make targets allow the users to either build
target executables, doxygen documentation, or perform
various administrative tasks. If a user develops changes that
he wants to check in or release, he can use a combination of
CVS and YaM to do so, though there are complex issues
regarding testing, target support, and impact on other
modules or users. These issues are discussed in the next
section.

5. CHALLENGES AND LESSONS LEARNED

We may categorize most of the challenges we have
encountered during CLARAty development as springing
from three primary sources: physical distance between team
members and testbeds, size and complexity of the software,
and governmental regulations. In some cases, solutions
have been found or can be foreseen. In others, we are
uncertain a workable solution can be achieved.

Distributed Team Challenges

For most of the K9 team, CLARAty was a first-time
experience in distributed development of a large software
project. The software must be built on several software
platforms – VxWorks, Linux, and Solaris – with different
compilers, and must work on many different robotic
platforms. Perhaps the biggest barrier to rapid development
has been the difficulty of verifying the impact of software
changes in a given module on other modules, platforms,
and robots which the person making those changes either
does not normally use, or which are not available in the
local lab. The CLARAty project has established a testbed
containing hardware subsystems of the rovers that is
accessible via remote login. However, some hardware is
one-of-a-kind, too expensive to replicate in the testbed, or
burdened with restrictive licensing.

It is a significant policy challenge to determine how to deal
with this issue, and one which is tied in to the question of
how users should structure and update their sandboxes. We

8

have attempted to pursue a policy of users primarily using
pre-built libraries and binaries that are supported by the
YaM tool to reduce the amount of software that needs to be
compiled for development and testing. These pre-built
modules which the users are not actively modifying are
known as “link modules” (described below in more detail)
However, this leads to the requirement that the developer
releasing a module has to build and test it on all supported
platforms, which includes VxWorks targets. The net effect
of this requirement has been that releasing a module is
intimidating, slow, and difficult.

For example, imagine that a developer makes significant
changes to the camera Generic Physical Component (GPC)
and wants to make a release. This necessitates
modification, testing, and re-release of the modules for all
of the hardware specializations being used on the various
rovers. However, not all the cameras in use are available
either locally or in the CLARAty testbed. For instance, the
interface board for Rocky 8’s cameras is only available on
the rover itself. Testing those cameras requires the
interactive support of a person co-located with the
equipment, thus doubling up on the personnel required had
the device been available locally. If testing on one such
camera points out changes required to the GPC, then the
process must begin once again.

Even for hardware that is available in the testbed, we have
found it difficult to automate testing, particularly tests that
require access to physical components, or tests requiring
VxWorks, due to a shortage of platforms, requirement for
exclusive access (VxWorks is a single user system), and
difficulty automating kernel configuration and loading.
Finally, the fairly high latency of the network between the
AFS servers at JPL and Ames also slows the testing
process.

As a result of these issues, developers tend to delay
integration into the main tree of the repository, as each site
is encouraged to develop pieces of code that are only
relevant locally. As the project grows, the reluctance among
the developers to commit changes back to the main
repository will only increase, as testing across platforms, re-
integration, and operation across a slow AFS link will
continue to take more and more time.

Weekly or bi-weekly conference calls involving the entire
CLARAty team help to keep everyone abreast of status and
issues. Teams working on subsystems communicate
regularly via phone and email. However, we have found
that face-to-face meetings among the team members are an
invaluable way to keep work flowing and synchronized.
JPL hosted a CLARAty workshop in early 2003 that most
of the team was able to attend. While these meetings are
expensive given the amount of time and number of people
involved, they and smaller ones like them are essential if
any sort of team coherence is be maintained.

Size and Complexity Challenges

Over the past two years, the capabilities and algorithms
encompassed by CLARAty have grown at a rapid rate. At

the time of the writing of this paper, there were over 300
modules and packages in the CLARAty database.
Managing the database and keeping builds consistent
becomes extremely complicated in the face of inter-module
dependencies and the use of link modules (described below).

CLARAty is broken up into small modules, most of which
depend on sets of other modules. This makes it possible
for each user to use only the parts of CLARAty he or she
needs, ignoring the rest, and have each part rest in a
consistent framework. The module decomposition in
CLARAty is based on the reusability model of the
architecture. In addition to making the usage of CLARAty
more efficient, it is a necessity since CLARAty supports
numerous drivers for various types of hardware and rovers
not relevant to all users. This modularity scales the
complexity of the sandbox according to the application. For
example, if Bob wants to do image analysis, and Jane wants
to drive motors, each can do so without having to check out
and build other parts of the system. Bob will have image,
camera_model, etc. checked out in his sandbox, Jane will
have motor, device, etc. checked out in hers, and both will
have the matrices and share modules checked out, since
these modules are used by both. If later they want to put
their work together to drive Jane’s motors using the results
of Bob’s image analysis to control where to go, the fact that
they are both using CLARAty makes this easier than if they
had worked in isolation, since they are using the same math
types and they can check out the modules together in the
same sandbox in a consistent manner. However, managing
the inter-module dependencies, choices of versions, and link
modules vs. work modules (and their branches) can be quite
complex.

Each module release results in both a new release tag for the
source code and the creation of a ‘link module’. The person
creating the release builds and tests on all the supported
platforms, and YaM moves the module directory containing
the sources, libraries, and executables, into a canonical
release area. When checking out or modifying a sandbox,
users have the option to use that module as a link module,
meaning that their sandbox contains symbolic links to that
pre-built module directory, or a work module, meaning that
their sandbox contains a checkout in a local directory of the
source files as they were at the time of that particular
release. The sources are built in the context of the user’s
sandbox. Link modules are faster to use, since the user
doesn’t have to rebuild them, but are somewhat risky to use
if the version dependencies are incorrect. Incorrect version
dependencies can lead to build skew, an error caused by
linking together objects that use differing versions of header
files. Build skew is dangerous and difficult to detect. It
may show up as link or dynamic loading errors that can be
difficult to track down, but that correctly prevent the user
from creating or running a skewed executable. It may also
manifest as subtle runtime corruption that may cause
seemingly random and untraceable crashes.

In its original form, YaM manages link-module version
dependencies by requiring users to release packages in
addition to releasing modules. A package is a collection of
modules containing all the dependencies. For example, if

9

module A depends on module B and A is in the package P,
B must also be in P. A package release groups together a
consistent set of release versions for all the component
modules. If A-1 and B-2 are in package release P-1 and A
depends on B, then the header files in B-2 must be the same
as those that A-1 was built against in order to be consistent.
 This model works fine for distinct projects that share some
overlap in the modules they use, but that have non-
overlapping user bases. However, this is not the case with
CLARAty. There are many components, and different
people, or even the same person at different times, use them
in fluid combinations. The package release model does not
scale well for this type of project. In the previous example,
Bob and Jane were originally using image-related modules
and motor-related modules in isolation, then at some point
decided to put them both together into the same sandbox.
For this to be possible, it would require three packages: one
containing image modules, a second containing motor
modules, and a third containing both image and motor
modules. However, there are dozens of such related module
sets that might be used alone or in combinations, plus
several specializations for each GPC (the motor
specialization Jane would have checked out depends on what
hardware she uses). The number of permutations is very
large.

In an attempt to address this problem, we have modified
YaM to automatically track the module version
dependencies each time a module release is made by
recording module versions present in the sandbox when the
resulting link module was built. This preserves the
information needed to detect potential build skew, and the
user can, if sufficiently skilled and motivated, examine the
version dependencies and logs and decide whether or not a
given sandbox is consistent. However, in practice it is
extremely challenging to use this information to analyze
sandboxes and to decide how to combine partially
overlapping sets of modules together, as in the earlier
example. Imagine that Bob is using image-R1-04b as a
link module, which was built against arrays-R1-08a. Jane
is using motor-R1-06b as a link module, which was built
against arrays-R1-08b. A header file in arrays changed
between those two versions, so one cannot assume that one
can safely use all of those link module versions together. It
turns out that there are more recent releases of image (R1-
04b through R1-04c-Build01) which were built against the
more recent version of arrays, but in which an image header
file changed. It is a complicated question as to whether or
not Bob can safely upgrade his image module, and if so to
which version, since he may be using other modules which
may or may not have been re-released using the newer
version of the image header files.

Attempts to make tools to automate this process, or to
assist the user, have met with difficulty due to the
complexity, high branching factor, and difficulty of
presenting the options in a way that a user can understand.
Ultimately, the right option to pursue depends on subtle
considerations of what the user wishes to accomplish, which
is difficult to convey to a software tool. For example,
another possible way for Bob to merge his work with Jane’s
would be to check out an older version of motor that used

the same version of arrays (arrays-R1-08a) as his image
module. If Jane’s work depends on the newer version of
motor, or if there isn’t a release of the motor specialization
she’s using that uses the older version of arrays this may
not work. Depending on the changes to the array header
file, Bob could also use the same releases of motor and the
motor specialization as Jane has been using as work
modules instead of link modules. These types of
considerations can be quite subtle and are outside the scope
of what an automated tool can take into account.

These issues illustrate a fundamental complexity of an
interdependent modular system in which changes can be
made to modules independently. This is not unique to
CLARAty but is seen in software projects that support a
similar reuse model with numerous adaptations This
problem is magnified by the fact that it is extremely
difficult to test the impact of the changes to one module on
all the modules that depend on it, due to limited hardware
availability, slow build times, and an essentially unbounded
number of modules, not all of which it is possible or, in
some cases, even desirable to maintain. These
considerations are also directly at odds with the desire to
reduce the burden on the developer to allow rapid
development. We have not yet found a workable solution
to this, and believe it is a fundamental problem CLARAty,
or in fact any similarly modular software development
effort, faces.

Governmental Regulation Challenges

Until mid-2003, CLARAty was unclassified by the U.S.
State Department with respect to the ITAR restrictions on
technology export. Several key principle investigators (PI)
at Ames are foreign nationals, and because of the lack of
classification they were unable to use our rover while the
project was under review. Any software they needed run on
the robot had to be written by a U.S. citizen team member,
and the PIs were unable to assist in debugging and testing.

Fortunately, CLARAty has now cleared both the State
Department and the Commerce Department with only
minimal restrictions on its distribution. This enables many
of our collaborators to begin incorporating their
technologies onboard the rover.

Other Challenges

Another difficulty faced by the project stems from the fact
that each institution tends to focus on the platform/rover
that it uses locally. JPL uses VxWorks with FIDO, Rocky
7 and Rocky 8, the AI group at JPL uses Solaris without
any particular rover, and the Ames group uses Linux with
K9. Because of this division, each center tends to push
development on their own platform, without much heed
paid to the quirks of the other platforms. For example,
until recently the VxWorks platform was restricted to a very
old version of the g++ compiler, which didn't support many
features that those programming under Linux and a more
modern compiler were used to using. Each time a developer
at Ames wanted to make a change, he had to verify that the

10

older compiler supported it, and work around as-yet-
unimplemented language features.

In addition to supporting CLARAty, most rovers and their
teams are also tasked with supporting other technology
development projects. Due to limited resources, this tends
to drive the developers to add capabilities to the system as
they are needed for a particular problem rather than in a
more thought out manner. While added resources could
help alleviate this problem, one of the strengths of
CLARAty is its responsiveness to the needs of the rover
technology community, and as such, the project should
continue to involve active robotics researchers in its
development team.

6. K9 INTEGRATION

Since we started participating in the CLARAty development
effort, many parts of the K9 software base have been
integrated into CLARAty. Most encouraging is the fact
that many parts of CLARAty that did not originate in the
K9 software base are now being used on K9, and many of
the K9-specific pieces of code are specializations of abstract
CLARAty types and interfaces. At the present time, only
the CLARAty functional layer is being used on K9, but as
we move into the more abstract realm of rover functionality,
the interfaces will become general enough that higher-level
decision layer elements will be able to interface with the K9
hardware in the same way that they interface with the other
rovers.

K9 - CLARAty integration started at the lowest level, in the
realm of motors, cameras, busses, and in the physical and
geometrical description of the hardware itself: the physical
relationship between the joints and wheels, and the
orientation of the various sensors, including camera
calibration. This is an ongoing process, as we revise the
way to describe a motor or compass or IMU or camera in
order to achieve greater functionality or compatibility and
attempt to re-integrate it into CLARAty as a standard.
Once an initial implementation of the basic robotic building
blocks was available, it became possible to describe whole
rover systems more generally, for example, motor -> wheel
-> locomotor, and similarly, motor -> joint -> manipulator.
 As we move up the abstraction tree, not only do more
things become possible; they also become easier. With a
uniform interface for locomotor, for example, which allows
one to generically specify drive commands and sequences, it
was relatively easy to start using the CLARAty Morphin
navigator developed at CMU [21], which adds obstacle
avoidance, and only needs to know about three things, all
specified generically: a locomotor, a model describing what
the locomotor can do, and a source of 3-D point clouds
from the environment. In K9’s case the point clouds are
provided by a pair of stereo cameras mounted to a pan/tilt
unit, but in other cases by fixed cameras pointing in
different directions, or by a laser scanner. Similarly, once
the interfaces are complete, one will be able to attach generic
position sensors (compasses, IMUs, GPS units, odometry)
to a pose estimator that can perform localization using any
number of techniques.

Visual tracking of features in the environment (typically
rocks or navigation landmarks) is one of the more advanced
technologies now in CLARAty. In this case, the developers
started with a specific set of algorithms to try on the various
rovers, and quickly implemented them. Later, in order to
make a comparative study, we stepped back to design a
generic interface that one could use to communicate with
any algorithm that tracks 2-D features in images, and re-
shaped the interface of the first tracker to conform to it. At
the same time, we took the visual tracker that was
previously implemented for K9, and re-shaped its interface
to also conform to the new CLARAty generic base class.
The result is several tracking algorithms that can be easily
swapped and compared, providing easy demonstration of
capabilities for mission planners.

CLARAty subsystems used by K9 include:

• cameras and camera bus;
• motors;
• joint, manipulator, wheel;
• locomotor;
• navigator;
• power system, including battery, solar panel, and

charger;
• kinematics model;
• linear algebra;
• camera model representations;
• low-level subsystems, such as serial

communications.

There has been considerable collaboration and these systems
include items developed both at Ames and elsewhere. It
has often been the case that the seeds of something required
to answer the needs of a technology development task on
K9 exist in CLARAty. We would use these, sometimes
redesigning the interfaces to make them work for our
application, and then try to reintegrate the new interfaces
back into CLARAty. It would be preferable to design new
modules as a team so that re-integration becomes smoother.
As CLARAty matures, the occurrence of such ad hoc
integration should lessen.

7. SUMMARY

The experience of integrating CLARAty onto the K9 rover
has been one of many challenges and yet is one that the
people involved would rate as rewarding. As CLARAty
grows to include more algorithms and better tools for
distributed development, the payoffs will only increase.
Ames experienced an example of how well the system can
work in our integration of the Morphin navigator onto K9.
In just two months, a single engineer was able to integrate
and test CMU’s locomotor and navigator code onto the
rover. This software now runs on rovers at three different
institutions.

The true payoff of CLARAty for Ames has been the ability
to demonstrate new technologies within mission operational

11

scenarios without having to develop the entire system in-
house. For example, leveraging manipulation and
navigation capabilities available within CLARAty, we have
been able to demonstrate autonomous single-cycle
instrument placement [6].

As the CLARAty community grows, mission managers
will have an increasing set of capabilities that they can then
compare and contrast to find those technologies that best
enable their mission. However, the difficulties created by
the sheer size and complexity of the system that we have
already seen will be exacerbated. The key will be to control
growth and find or develop tools that ease testing and
version control.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank the researchers
and developers of CLARAty at JPL, Ames, and CMU.

The research described in this paper was carried out by the
Intelligent Robotics Group at the National Aeronautics and
Space Administration’s Ames Research Center; the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with NASA; and Carnegie Mellon
University. Funding for this research is provided by the
Mars Technology Program, managed by the NASA Office
of Space Sciences, with additional funding from the
Intelligent Systems (IS) Program. The IS Program is
managed by the NASA Office of Aerospace Technology.

Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement
by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

REFERENCES

[1] National Research Council, New Frontiers in the Solar
System: An Integrated Exploration Strategy, The National
Academies Press, 2003.

[2] NASA Office of Space Science, Solar System
Exploration Roadmap, JPL Publication 400-1077, Jet
Propulsion Laboratory, Pasadena, CA, May 2003.

[3] Bresina, J., M. Bualat, L. Edwards, R. Washington, A.
Wright, “K9 Operation in May ’00 Dual-Rover Field
Experiment,” 6th Intl. Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS), Montreal,
Canada, 2001.

[4] Lawrence, G.M., J.E. Boynton, et al, “CHAMP:
Camera HAndlens MicroscoPe,” The 2nd MIDP
Conference, Mars Instrument Development Program. JPL
Technical Publication D-19508, 2000.

[5] Nesnas, I., R. Volpe, T. Estlin, H. Das, R. Petras, D.
Mutz, “Toward Developing Reusable Software Components
for Robotic Applications,” IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 29
Oct. – 3 Nov. 2001.

[6] Pedersen, L., M. Bualat, D. Lees, D.E. Smith, R.
Washington, “Integrated Demonstration of Instrument
Placement, Robust Execution and Contingent Planning,”
7th Intl. Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS), Nara, Japan, May 2003.

[7] Volpe, R., “Rover Functional Autonomy Development
for the Mars Mobile Science Laboratory,” IEEE Aerospace
Conference, Big Sky, Montana, 8-15 March 2003.

[8] http://telerobotics.jpl.nasa.gov/tasks/claraty.

[9] Mars Expeditions Strategy Group, D. McCleese (chair),
“Part 1: The Search for Evidence of Life on Mars,” Mars
Exploration Program Analysis Group (MEPAG) Report,
July 2001.

[10] Nesnas, I.A., M. Maimone, H. Das, “Rover
Maneuvering for Autonomous Vision-Based Dexterous
Manipulation,” IEEE Conf. on Robotics and Automation
(ICRA), San Francisco, CA, 24-28 April 2000.

[11] Schenker, P., T. Huntsberger, P. Pirjanian, E.
Baumgartner, and E. Tunstel, “Planetary Rover
Developments Supporting Mars Exploration, Sample
Return and Future Human-Robotic Colonization,”
Autonomous Robots 14, 103-126, 2003.

[12] ATRV is a trademark of iRobot,
http://www.irobot.com/rwi/.

[13] http://www.perl.org.

[14] Krause, Ralph, “CVS: an introduction,” Linux
Journal, Vol. 2001, Issue 87, July 2001.

[15] http://www.gnu.org/software/make/.

[16] http://www.doxygen.org.

[17] http://www.cs.wustl.edu/~schmidt/ACE.html.

[18] http://cppunit.sourceforge.net/cgi-bin/moin.cgi.

[19] Eng, Eirik, “Qt GUI Toolkit: Porting graphics to
multiple platforms using a GUI toolkit,” Linux Journal,
Vol. 1996, Issue 31es, November 1996.

[20] Spasojevic, M., Satyanarayanan, M., “An empirical
study of a wide-area distributed file system,” ACM
Transactions on Computer Systems, Vol. 14, Issue 2, May
1996, pp. 200-222.

[21] Urmson, C., Simmons. R., Nesnas, I., “A generic
framework for robotic navigation,” IEEE Aerospace
Conference, Big Sky, Montana, 8-15 March 2003.

12

BIOGRAPHIES

Anne Wright graduated in 1996 from MIT with B.S. and
M.Eng. degrees in Computer
Science. While at MIT she worked
at the Artificial Intelligence
Laboratory on visual tracking,
software, and systems integration
for flying and walking robots,
and co-founded Newton Research
Labs, where she continued to
work after leaving MIT. She
joined code IC at Ames in 1998 to
work on autonomous planetary

rover testbeds, and she is currently leading the CLARAty
integration effort for the K9 project.

Issa A.D. Nesnas, Ph.D. is the Task Manager for the
Architecture and Autonomy
Research collaborative task and the
principal investigator on a number
of robotic research tasks at JPL.
His research interests include
software and hardware
architectures for robotic systems
and sensor-based robot control.
Issa received a B.E. degree in
Electrical Engineering from
Manhattan College, NY, in 1991.

He earned the M.S. and Ph.D. degrees in Mechanical
Engineering from the University of Notre Dame, IN, in
1993 and 1995 respectively. In 1995, he joined Adept
Technology Inc. as a senior project engineer. He has joined
NASA at the Jet Propulsion Laboratory in 1997. At JPL he
has worked on several robotic and flight projects
researching autonomous sensor-based systems. He has
received several Notable Organizational Value Added
(NOVA) Awards and an Exceptional Achievement Award
for his work at JPL. Issa holds a patent for the Impulse-
based flexible parts feeder and is a member of Eta Kappa
Nu and Tau Beta Pi National Honor Societies.

Clay Kunz is the lead software engineer for the K9 rover at
NASA Ames. He is also the head of
the math and data structures
subgroup of CLARAty. He's been an
employee of QSS Group, and has
had his hands inside K9, at Ames
since 2001, before which he spent
time making robot tour guides at a
start-up company in Pittsburgh, PA.
Clay holds BS and MS degrees from
Stanford University, and lives in

San Francisco.

Maria Bualat is the project manager and lead systems
engineer for the K9 rover an NASA Ames Research Center.
 Maria received her B.S. in Electrical Engineering from
Stanford University in 1987, and her M.S. in Electrical
Engineering, emphasis Control Systems, from Santa Clara
University in 1992. She has been a researcher on vision

and navigation tasks for mobile
robots since 1996. Prior to
working on robots, Maria was a
member of the Ames Photonics
research group, developing
optical matrix and fourier optics
processors and fiber optic
microphones.

